Exergy Flows inside a One Phase Ejector for Refrigeration Systems
نویسندگان
چکیده
Abstract: The evaluation of the thermodynamic performance of the mutual transformation of different kinds of exergy linked to the intensive thermodynamic parameters of the flow inside the ejector of a refrigeration system is undertaken. Two thermodynamic metrics, exergy produced and exergy consumed, are introduced to assess these transformations. Their calculation is based on the evaluation of the transiting exergy within different ejector sections taking into account the temperature, pressure and velocity variations. The analysis based on these metrics has allowed pinpointing the most important factors affecting the ejector’s performance. A new result, namely the temperature rise in the sub-environmental region of the mixing section is detected as an important factor responsible for the ejector’s thermodynamic irreversibility. The overall exergy efficiency of the ejector as well as the efficiencies of its sections are evaluated based on the proposed thermodynamic metrics.
منابع مشابه
Thermoeconomic optimization and exergy analysis of transcritical CO2 refrigeration cycle with an ejector
The purpose of this research is to investigate thermoeconomic optimization and exergy analysis of transcritical CO2 refrigeration cycle with an ejector. After modeling thermodynamic equations of elements and considering optimization parameters of emerging temperature of gas of cooler (Tgc) , emerging pressure of cooler's gas (Pgc) , and eva...
متن کاملExergy, exergoeconomic and exergoenvironmental studies and optimization of a novel triple-evaporator refrigeration cycle with dual-nozzle ejector using low GWP refrigerants
In this work, a novel dual-nozzle ejector enhanced triple-evaporator refrigeration cycle (DETRC) without separator is proposed to improve the performance of the conventional ejector one (CETRC). The performance of DETRC is analyzed and compared with CETRC in term of energy coefficient of performance (COPen). Under given operating conditions, the COPen improvement of the no...
متن کاملStudy Of New Absorption-Ejector Hybrid Refrigeration System
The thermodynamic and thermo-economics models for three-pressure absorption-ejector hybrid refrigeration system are set up. The thermo-economical analysis model of the system is considered in two cases of high-temperature heat resources: waste heat resources and natural gas fuel are presented. The performances of the system in two modes of the running hours per year (600h and 1000h) are calcula...
متن کاملThermodynamic analysis of three combined power and refrigeration Systems based on a demand
Three combined power and refrigeration system are introduced to compare and analyze for a defined demand and same fuel consumption based on thermodynamic parameters in a 24 hours period. Gas turbine and/or steam turbine are used for power generation and also ejector refrigeration cycle is used to produce cooling. These three systems are named as GER, SER and GSER. The results of three systems a...
متن کاملThermoeconomic optimization and exergy analysis of transcritical CO2 refrigeration cycle with an ejector
The purpose of this research is to investigate thermoeconomic optimization and exergy analysis of transcritical CO2 refrigeration cycle with an ejector. After modeling thermodynamic equations of elements and considering optimization parameters of emerging temperature of gas of cooler (Tgc) , emerging pressure of cooler's gas (Pgc) , and eva...
متن کامل